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Motivated by applications in rapidly rotating machinery, we have previously extended
the lubrication model of the thin-film flow on the inside of a rotating circular cylinder
to incorporate the effect of a constant shear applied to the free surface of the
film and discovered a system rich in film profiles featuring shock structures. In this
paper, we extend our model to include the effects of surface tension at leading order
and take into account higher-order effects produced by gravity in order to resolve
issues regarding existence, uniqueness and stability of such weak solutions to our
lubrication model. We find, by analytical and numerical means, a set of feasible steady
two-dimensional solutions that fit within a rational asymptotic framework. Having
identified mathematically feasible solutions, we study their stability to infinitesimal
two-dimensional disturbances. Based on our findings, we conjecture which of the
possible weak solutions are physically meaningful.

1. Introduction
There is a substantial and growing literature on thin-film flows on the inside

(rimming flow) or outside (coating flow) of a rotating circular cylinder. The earliest
work, Ruschak and Scriven (1976) and Orr and Scriven (1978), was concerned with
the case when the fluid is in almost rigid-body rotation and the effects of gravity are
small. Subsequently, the focus has shifted away from this parameter regime, but the
coating and rimming flows that develop on the high-speed shafts within a modern
aeroengine bearing chamber are closer to Scriven’s parameter values.

Motivated by such considerations, Noakes, King & Riley (2005) consider the linear
stability of rigidly rotating circular films in the absence of gravity. They systematically
examine three-dimensional disturbances under the assumptions that the liquid filling
fraction is small and that there is a continuous film coating the surface of the
cylinder. Both asymptotic and numerical results suggest that the most unstable mode
for thin-film flows on the inside surface of a cylinder is purely axial (ring instability);
the asymptotically determined critical wavenumber is shown to depend solely on
the reciprocal Weber number S, which must be greater than unity for instability
to occur. When the filling fraction takes moderate values, however, instability can
occur when S < 1. Noakes et al. also identify the critical wavenumber with maximum
growth rate for thin-film flows on the outside surface of a cylinder. For small reduced
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Reynolds numbers and S > 1, the disturbance is purely axial (ring instability), but
when 0<S < 1 the most unstable disturbance may be either a purely axial or a
purely azimuthal mode. The numerical results, however, suggest that, as the mode
with the highest growth rate, a stripe instability (azimuthal mode) is likely to occur.
While agreeing with some experimental evidence, this result conflicts with results from
other experiments, suggesting that effects ignored in their study, gravity for example,
even though weak, can play a significant role in mode selection, see Noakes et al.
(2005).

Revallo & Riley (2004) make considerable analytical progress in the case of rimming
flow having asymptotically small mean film thickness by treating gravitational effects
as weak and perturbing about the Scriven solution. Their systematic approach enables
them to explore both the effects of strong applied surface shear and of weak inertia.
Asymptotic expressions are derived for the base state, the modes of disturbance and
their growth rates. Consistent with the results of Noakes et al. (2005), the most
unstable mode is purely axial (ring instability) for moderate values of the surface
tension. When surface tension is weak, the most unstable modes have low azimuthal
and axial wavenumbers. Furthermore, the effects of surface tension and inertia are in
competition, and the destabilizing effect of inertia may be totally mitigated depending
on the size of the surface shear. It is worth remarking that one well-known example
of a ring-type instability is the so-called hygrocyst, Balmer (1970). Thoroddsen &
Mahadevan (1997) state that the combination of high filling fraction and large
viscosity leads to the formation of these radial sheets of fluid that span the whole
cross-section and partition the cylinder; furthermore, their experimental data reveals
that they occur at higher rotation rates. The axial instability mentioned above could
represent the birth of this feature as fluid accumulates to produce a locally high value
of the filling fraction.

As mentioned above, the majority of studies have concentrated on the comple-
mentary situation when rotation rates are lower and the effects of gravity are order
one, see Ashmore, Hosoi & Stone (2003) for a recent comprehensive review. Benjamin,
Pritchard & Tavener (1993), building on a study by Johnson (1988), investigate
how solutions to the basic lubrication model that feature shocks are smoothed
by the incorporation of higher-order effects due to gravity and, in addition, to
surface tension, an aspect later studied in more depth by Wilson & Williams (1997).
Benjamin et al. prove smooth two-dimensional solutions to the lubrication-model
equations (no surface tension) are neutrally stable to two-dimensional (azimuthal)
modes of disturbance (they briefly discuss three-dimensional effects). They also
demonstrate asymptotic stability of a supercritical weak solution with a shock in
the lower quadrant on the rising side of the cylinder. Hosoi & Mahadevan (1999)
show stability of two-dimensional flows to three-dimensional perturbations in the
presence of surface tension. In addition to a linear instability analysis, Hosoi &
Mahadevan conduct numerical studies by allowing time-dependent solutions to evolve
to steady states. By solving at parameter values outside the range for which the
equations are strictly valid, they capture fascinating shark-teeth patterns as observed
experimentally by Johnson (1990) and by Thoroddsen & Mahadevan (1997). Hosoi &
Mahadevan highlight that this pattern results when a spatially localized ridge (a
region of rapid change in the profile height) is perturbed axially, and thicker regions
travel faster than thinner ones. The destabilizing mechanism is due to gravitational
and viscous forces, but wavelength selection is controlled by capillary and viscous
forces.
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O’Brien (2002a) confirms the results of Benjamin et al. regarding the neutral stability
of the subcritical modes and the stability of a film profile featuring a single shock
located in the lower half on the rising side of the cylinder. O’Brien (2002b) extends
the lubrication model to higher order in the dimensionless film thickness (including
the small effects of the variation of the film pressure across the film thickness
and surface tension) and studies the stability of steady two-dimensional solutions
to two-dimensional disturbances. Although surface tension prevents instability in
most cases, negative diffusion in the upper half of the cylinder causes instability
when higher-order effects are strong enough. O’Brien carefully discusses a range of
profiles featuring single and multiple shocks, and examines their stability in terms
of kinematic-wave theory. Benilov, O’Brien & Sazonov (2003) study novel explosive
instabilities using model equations loosely related to those governing thin-film rimming
flow. Their system admits infinitely many neutrally stable harmonic modes, but has
non-harmonic solutions that develop singularities in finite time.

Motivated by applications in rapidly rotating machinery, Villegas-Dı́az, Power &
Riley (2003) generalize the lubrication model of the rimming-flow problem to
incorporate the effect of a constant applied surface shear and undertake a compre-
hensive study of both sub- and supercritical solutions and their stability. Using
kinematic-wave theory, they describe novel weak solutions where the stable surface
profile may feature a shock at any location around the cylinder. Black (2002) also
studies this problem, generalizing to both exterior and interior flows. He calculates
(using lubrication theory) the maximum load of liquid that can be supported on the
outside of a cylinder, and the study includes an analysis of single-shock structures
when the cylinder is stationary.†

In this work we develop a higher-order lubrication theory for the problem con-
sidered by Villegas-Dı́az et al. (2003). Our principal aim is to address issues regarding
the existence and uniqueness of steady two-dimensional solutions which, according
to lubrication theory, feature shocks. In particular, we include the effects of surface
tension at leading order and take into account higher-order effects produced by
gravity. We find, by analytical and numerical means, a set of feasible steady two-
dimensional solutions that fit within a rational asymptotic framework. Having identi-
fied mathematically feasible solutions, we study their linear stability. Though many
of the observed experimental patterns are truly three-dimensional, a number of them
represent instabilities of two-dimensional profiles that feature a ridge, i.e. a local
steepening of the fluid profile. Thus our restricting attention to two-dimensional
studies is justifiable and a sensible initial step.

The plan of this paper is as follows. In § 2, we describe the governing system of equa-
tions, which, closely following the style of Ashmore et al., are developed asymptotically
in the Appendices by assuming that the film has small aspect ratio. In § 3, we describe
possible steady two-dimensional solutions of the lubrication model and use analytical
techniques to investigate the smoothing effects of gravity and surface tension on the
profiles featuring shocks. This process identifies those structures that are asymptotic-
ally consistent and hence mathematically feasible. In § 4, we describe our numerical
method, while, in § 5, we present computed steady two-dimensional (weak) solutions
and, in § 6, study their linear stability. Finally in § 7, we present our conclusions.

† Three months after this paper was submitted, Professor Wilson sent us a preprint, Wilson,
Duffy & Black (2004), reporting on an independent study which contains work reported in Black’s
thesis and which overlaps with aspects of ours.
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Figure 1. Definition sketch of the basic configuration.

2. Governing equations
Free-surface viscous flow in a partially filled circular cylinder rotating about its

horizontal axis in a vertical gravitational field is considered. As in most previous
studies, flow variations in the axial direction are neglected and plane polar coordinates
r , centred on the cylinder axis, and θ , where 0 � θ < 2π measured anticlockwise from
the horizontal (figure 1), are employed.

Incompressible viscous fluid of thickness h(θ, t), density ρ, viscosity ν and surface
tension σ flows on the interior of an infinite circular cylinder of radius R rotating
anticlockwise about its horizontal axis with angular velocity Ω in a gravitational
field g = −g j , where j is a unit vector pointing vertically upwards and g is the
acceleration due to gravity. On assuming that thermophysical properties of the fluid
are all uniform, the velocity, u = (u, v), and pressure, p, satisfy the continuity and
Navier–Stokes equations

∇ · u = 0, (2.1)

u · ∇u = −ρ−1∇p + ν∇2u + g. (2.2)

In this investigation, the effects of surface tension and of a constant shear stress
acting at the free surface are studied, thus 2π-periodic solutions are sought such that

u = ΩReθ at r = R, (2.3)

n · T = −pan − σκn + Ta t at r = R − h(θ, t), (2.4)

where T is the stress tensor, t (n) is the unit tangential (normal) vector to the interface
(directed away from the fluid), pa is the constant pressure outside the film, κ is the
curvature of the free surface and Ta is the applied constant surface stress.

The study concentrates on the case when the so-called filling fraction A is small,
where

πRA =

∫ 2π

0

[
h(θ, t) − h(θ, t)2

2R

]
dθ. (2.5)
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Thus if h0 is taken as a typical film thickness such that h0 � R, it could conveniently
be defined by

h0 =
1

2π

∫ 2π

0

h(θ, t) dθ.

The details of the derivation of the asymptotic form of the governing system as
δ = h0/R → 0 are relegated to the Appendices. To O(δ), the dimensionless profile
height h is governed by an evolution equation involving the dimensionless flux q

(1 − δh)
∂h

∂t
+

∂q

∂θ
= 0, (2.6)

where

q = h + 1
2
γ h2 − 1

3
h3

(
Γ cos θ − B−1 ∂

∂θ

(
h +

∂2h

∂θ2

))

+ δ

[
− 1

2
h2 − 5

6
γ h3 + 1

2
Γ h4 cos θ + 1

3
Γ h3 ∂h

∂θ
sin θ

− 1
6
h4B−1 ∂

∂θ

(
h +

∂2h

∂θ2

)
+ 1

3
h3B−1 ∂

∂θ

(
h2 + 2h

∂2h

∂θ2
+ 1

2

(
∂h

∂θ

)2)]
. (2.7)

This system contains the three dimensionless groups γ = Taδ/µΩ , Γ = gh2
0/νΩR and

B−1 = σδ3/ΩµR.
When γ = 0, (2.6) and (2.7) reduce to the forms derived by Ashmore et al. (2003)

when differences in notation and minor typographical errors (in Ashmore et al. (2.8),
the expression for κ1, is in error and in their equation (2.13) the coefficient of dκ1/dθ

should involve 1/3, not 1/6) are taken into account. Note that Tirumkudulu &
Acrivos (2001) confirm the great utility of asymptotic representations, such as those
derived in the Appendices, by demonstrating the close agreement of the resulting
film profiles with those obtained experimentally, as well as by numerically solving the
Stokes equations.

Neglecting O(δ) and surface-tension terms corresponds to the classical lubrication
limit; the system (2.6), (2.7) with δ = B−1 = 0 is termed the ‘lubrication model’.

3. Lubrication model (δ = 0 and B−1 = 0)
For definiteness, we take the characteristic film thickness h0 =

√
νΩR/g so that

Γ = 1 througout this study (the slight loss in generality is covered by the studies of
Revallo & Riley (2004) for Γ � 1, and of Ashmore et al. (2003) for Γ � 1). The
steady-state solutions for the lubrication model, with negligible surface shear stress
(γ = 0), that are immediately relevant to the rimming-flow problem considered herein
are well known and were originally investigated by Moffatt (1977) and subsequently
revisited by Johnson (1988), Benjamin et al. (1993), Wilson & Williams (1997) and
O’Brien & Gath (1998). Moffatt describes the solutions in terms of the value of the
flux q and a dimensionless mean film thickness h̄ defined by

h̄ =
1

2π

∫ 2π

0

h(θ, t) dθ,

which is effectively a measure of the filling fraction, since

A =
δ

π

∫ 2π

0

(
h(θ, t) − δ

2
h(θ, t)2

)
dθ,
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and A= 2δh̄ to leading order in δ. When q < 2/3, there is a single bounded neutrally
stable film profile which is smooth and completely wets the cylinder’s surface. This
profile has vertical symmetry, its thickness being a maximum at θ = 0, i.e. at the
equator on the rising side of the cylinder, and a minimum at the point diagonally
opposite. There are two other profiles: a C∞-profile which is totally negative and
physically infeasible, and an unbounded profile consisting of two disconnected positive
and negative branches. A larger filling fraction leads to a new smooth profile with
larger mean film thickness and flux until h̄ = h̄1c = 0.7071 and q = 2/3, when the
profile remains symmetric and continuous, but loses smoothness, developing a corner
at θ = 0 with a discontinuous slope. At this point the positive unbounded branch
effectively coalesces with the physical branch. For q = 2/3 and h̄1c < h̄ < h̄2c = 1.1023,
no continuous profile exists, but asymmetric stable (weak) solutions can be constructed
from the two solution branches by introducing a shock in the fourth quadrant (i.e. by
jumping between the two branches). Benjamin et al. were the first to highlight and
calculate the upper bound corresponding to h2c; note that (i) their value is 1.1067
and is at slight variance with ours; (ii) this particular type of upper bound applies
throughout this study but is left implicit, i.e. we have not re-calculated it for each and
every case.

The possible steady-state solutions of (2.7) with δ =0 and non-zero surface stress
(γ �= 0) were investigated independently by Villegas-Dı́az et al. (2003) and by Black
(2002). Broadly speaking, the results in the cases of γ � 0, q > 0 and γ < 0, q < 0
are qualitatively similar to those described above. However, when γ < 0 and q > 0,
considerable differences are observed between the cases with zero and with non-zero
surface stress.

3.1. The surface shear stress and the azimuthal flux in opposite directions:
γ < 0 and q > 0

This is the case with the richest dynamics. Generally, there are now two positive C∞-
profiles and a third disjoint profile with unbounded positive and negative branches
(cf. figure 3). These two continuous profiles allow, at least in principle, the existence
of shock structures at any location around the cylinder. This contrasts with the pure
rotation case when a stable shock can exist only in the fourth quadrant, i.e. on the
lower half of the rising side of the cylinder.

For a given γ , there are two critical fluxes corresponding to the existence of corners:

q0
c = hc(0)

(
2
3

+ 1
6
γ hc(0)

)
, (3.1)

and

qπ
c = hc(π)

(
2
3

+ 1
6
γ hc(π)

)
, (3.2)

at θ =0 (cf. figure 3a) and θ = π (cf. figure 3b), respectively; hc denotes the height
of the film at the corner. The existence of these two critical fluxes for a given value
of γ < 0 implies that there are two possible branches of physically sensible solutions
with different values of the critical flux. In order to analyse all the possible profiles,
it is convenient to refer to specific regions of parameter space. In figure 2, we show
regions of γ, q-space with boundaries given by the graphs of the critical fluxes as
functions of γ , together with illustrations of the various profiles that can occur when
a fully wetting solution exists. There are three main regions in which the solutions
exhibit qualitatively different behaviours. Noting that q0

c = qπ
c = 0.2068 when γ = γb =

−2.149139, region I is defined by the set of points {(γ, q): −4/
√

3 < γ < γb, 0 <q � qπ
c

and γ � γb, 0 <q � q0
c }, region II by {(γ, q): −4/

√
3 > γ, qπ

c � q < 0} and region III by
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Figure 2. q versus γ showing regions I, II, III, IV and V and the critical curves q = q0
c (solid

curve) and q = qπ
c (dashed curve). The insets illustrate the various profiles present in each

region.

{(γ, q): γ < −4/
√

3, 0 <q � q0
c and −4/

√
3 < γ < γb, q

π
c � q � q0

c }. In the remainder of
parameter space (regions IV and V) there are no steady fully wetting two-dimensional
solutions.

Thus the region of physical interest in γ, q-space with γ q < 0 consists of that part
of region I where γ < 0 and q > 0, and region III. Within region I, the situation is a
simple development of the Moffatt case described in § 3. The only qualitative change
is that, as γ decreases through zero (with q fixed), the unphysical upper branch
develops a turning point where dθ/dh = 0 and the upper branch exists for |θ | <θtp ,
say. This occurs at (γ , q) = (γtp, q0

c ), say, along the critical curve.
When (γ , q) reaches the dashed curve in figure 2, the turning point becomes a corner

and as γ decreases further, so that the parameter values lie in region III, the upper
curve above the turning point detaches leaving behind a completely wetting profile
and creating a new unphysical, unbounded part. Within region III, we have three real
positive profiles: (i) smooth with h<hc(0); (ii) smooth with hc(0) < h < hc(π); and
(iii) a disjoint profile with unbounded positive and negative branches, the positive
branch having minimum height h(π) > hc(π). Therefore in this region, we always have
two completely wetting film profiles corresponding to different mean film thicknesses,
but associated with the same flux. When q = q0

c , the two wetting profiles have a
common height at θ = 0, but differing mean film thicknesses, and the positive un-
bounded branch is not attached to the other two branches (see figure 3a). On the other
hand, when q = qπ

c (see figure 3b), the two wetting branches are disjoint, but the pos-
itive unbounded branch is attached to the upper wetting branch at θ = π. Figure 3(c)
illustrates the special case when the condition q = q0

c = qπ
c is satisfied. In this case, the

two wetting profiles are joined at the origin, while the upper wetting branch is joined
with the unbounded branch at θ = π. For values of q �= q0

c or qπ
c , the three branches

are completely disjoint.
Now, in principle, solutions featuring shocks may be constructed by joining positive

branches of the leading-order solutions in an appropriate way. This may involve single
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Figure 3. The film profiles for the cases with δ = 0, B−1 = 0 and (a) q = q0
c = 0.1825 and

γ = −2.5; (b) q = qπ
c =0.148 and γ = −2.2; (c) q = q0

c = qπ
c =0.2068 and γ = −2.149139.

shocks, as discussed by Villegas-Dı́az et al. or multiple shocks (Johnson 1988), which
have not previously been fully explored in the particular context of rimming flows.
Observe that, for fixed values of the mean film thickness and flux, there are infinitely
many steady-state completely wetting film profiles featuring multiple shocks (i.e.
crenellated structures). One of the main objectives of this study is to analyse how
this non-uniqueness is moderated by the effects of gravitational and surface-tension
smoothing. Furthermore, by investigating the stability of such steady solutions, we
shall determine which of them are physically realizable.

In the present study, two questions are addressed. (i) Does (2.7) possess an
asymptotic structure that accommodates regions of rapid variation that match onto
smooth outer solutions? (ii) Are the solutions (linearly) stable and hence physically
realizable? Aspects of the first question when γ = 0 have previously been considered,
for example by Johnson (1988), and Benjamin et al. (1993), and in more detail by
Wilson & Williams (1997) and Wilson, Hunt & Duffy (2002). In contrast, the question
of stability of weak solutions has received much less attention (see Villegas-Dı́az et al.
2003).

Before presenting steady-state profiles, we investigate some of the detail of the
asymptotic structure of the solutions featuring shocks. Smoothing of the shock struc-
ture may be achieved by incorporating effects neglected in the lubrication model.
Two smoothing mechanisms are possible within the current model, gravity and
surface tension. Johnson (1988) was the first to discuss gravitational smoothing; while
Wilson & Williams (1997) presented the first substantial analysis of surface-tension
smoothing. The analysis is straightforward (see below): we simply identify the
derivative terms that become significant in the inner region surrounding the shock
and rescale to bring these into balance (cf. Black 2002, who has independently studied
this problem).

3.2. Gravitational smoothing of shocks

Suppose first that surface tension is neglected, so that (2.7) reduces to

q = h + 1
2
γ h2 − 1

3
h3 cos θ + δ

[
− 1

2
h2 − 5

6
γ h3 + 1

2
h4 cos θ + 1

3
h3 ∂h

∂θ
sin θ

]
. (3.3)

When δ =0, this equation has three roots, denoted by h1, h2 and h3 say, which can be
written down explicitly using the Cardano formulae (Revallo & Riley 2004). Since we
are analysing a situation when shocks may occur, at least two, and hence all three,
roots may be taken to be real. On setting θ = θs + δφ in the inner region around
a shock located at θ = θs(�= 0 or π) and taking h(θ) ≡ H (φ) = O(1) as δ → 0+, (3.3)
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Figure 4. Examples of possible shock structures in the critical case q = q0
c = 0.1359,

γ = −3.5, δ = 0, B−1 = 0: (a) h̄ =0.2432, (b) h̄ =0.2584, (c) h̄ = 0.2740.

gives, at leading order,

cot θs

dφ

dH
=

H 3 cos θs

3
(
q − H − 1

2
γH 2 + 1

3
H 3 cos θs

) (3.4)

≈ H 3

(H − h1)(H − h2)(H − h3)
. (3.5)

Equation (3.5) has an implicit solution, satisfying H (0) = hs , given by

φ cot θs = −hs + H +
h3

1

(h2 − h1)(h3 − h1)
log

∣∣∣∣H − h1

hs − h1

∣∣∣∣
+

h3
2

(h3 − h2)(h1 − h2)
log

∣∣∣∣H − h2

hs − h2

∣∣∣∣ +
h3

3

(h1 − h3)(h2 − h3)
log

∣∣∣∣H − h3

hs − h3

∣∣∣∣. (3.6)

This result provides the key to determining which shock structures are mathematically
feasible. To illustrate the nature of the mathematical argument, suppose that the height
at one end of the shock is h2. In the limit H → h2,

φ cot θs ∼ h3
2

(h3 − h2)(h1 − h2)
log

∣∣∣∣H − h2

hs − h2

∣∣∣∣,
→ −sign[(h3 − h2)(h1 − h2)]∞. (3.7)

If sign[(h3 − h2)(h1 − h2)] < 0, then φ → + ∞ (θ > θs) when 0<θs < π/2 and π < θs <

3π/2. In other words, this end of the shock must be approached in a clockwise
direction along the branch on which h → h2 as θ → θs+ in order to allow asymptotic
matching. On the other hand, if the sign were positive, this end must be approached
from the anticlockwise direction. Systematic application of this form of argument
indicates the possible shock structures.

When q = q0
c , the local analysis suggests that forward-facing shocks (height

decreases as θ increases) are feasible in the upper half of the cylinder, i.e. the first
and second quadrants (0 <θs < π), and rearward-facing shocks in the lower half, i.e.
the third and fourth quadrants (π < θs < 2π). In this case, for a mean film thickness in

excess of that of the lower wetting branch, h̄
l
, but less than h̄

m
= (h̄

u
+ h̄

l
)/2, the mean

of the mean film thicknesses of the upper and lower wetting branches, it is feasible to
have three qualitatively different shock profiles. There can be a profile with a single
forward- or a single rearward-facing shock, or a profile featuring a combination of
them, i.e. a double-shock structure. The possibilities are illustrated in figure 4. For
larger mean film thicknesses that remain less than that of the upper branch (h̄

u
),

only film profiles with a double-shock structure are feasible. On the other hand, for
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Figure 5. Three possible shock structures at the critical point q = qπ
c = −3.7976, γ = −3.5,

δ = 0, B−1 = 0: (a) h̄ = 2.1449, (b) h̄ = 2.0889, (c) h̄ =2.2770.

mean film thicknesses larger than that of the upper branch, it is feasible to have a
film profile featuring a double-shock structure between the upper wetting branch and
a detached unbounded one, with the rearward-facing shock in the second quadrant
(π/2 < θs < π) and the forward-facing one in the third quadrant (π � θs < 3π/2).

When q = qπ
c , shocks can, in principle, be found between the upper wetting branch

and the unbounded branch. In this case, the local analysis indicates the feasibility
of rearward-facing shocks in the second quadrant (π/2 < θs < π) and forward-facing
shocks in the third quadrant (π � θs < 3π/2). As before, film profiles can feature
single- or double-shock structures (see figure 5). In this case, it is also possible to have
a film profile with a double-shock structure between the detached upper and lower
wetting branches, with a forward-facing shock in the upper half of the cylinder and
a rearward-facing one in the lower half.

When q = q0
c = qπ

c , any of the profiles described above are feasible.
When q is different from any of the above critical values, it is feasible to have a

double-shock structure between the two (detached) wetting branches, with a forward-
facing shock in the upper half of the cylinder and a rearward-facing one in the lower
half, or a double-shock structure between the detached unbounded branch and the
upper wetting branch, with a rearward-facing shock in the second quadrant and a
forward-facing one in the third quadrant.

In summary, the local inclusion of the ‘higher-order’ gravitational effect reduces
the range of mathematically feasible surface profiles to those that feature single- or
double-shock structures (or are smooth). No more than two shocks can appear in
any of the cases considered above. Therefore the local analysis does not completely
remove the non-uniqueness of solutions arising in the lubrication model, but it does
limit the types of possible solution.

3.3. Smoothing of shocks by surface tension

Suppose now that terms of O(δ) are neglected, so that (2.7) reduces to

q = h + 1
2
γ h2 − 1

3
h3(cos θ − B−1(h′ + h′′′)), (3.8)

and that 0 <B−1 � 1. Setting θ = θs + B−1/3φ in the inner region around a shock
located at θ = θs and taking h(θ) ≡ H (φ) = O(1) as B−1 → 0 +, (3.8) becomes at lead-
ing order

d3H

dφ3
=

3

H 3

(
q − H − 1

2
γH 2 + 1

3
H 3 cos θs

)
. (3.9)

In the absence of a closed-form solution to this equation, analytical progress may be
achieved by local linearization. Substituting H = hi + ζ (φ) into (3.9), and linearizing
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about the end-point of the shock, gives

d3ζ

dφ3
=

3

h3
i

(
h2

i cos θs − γ hi − 1
)
ζ, (3.10)

where i =1, 2 or 3 according to which of the film profiles is considered (for definiteness,
the roots h = h1, h2 and h3 are taken to correspond to the heights of the lower wetting,
upper wetting and unbounded branches). Integrating (3.10)

ζ (φ) = a1 exp(αiφ) + exp
(

− 1
2
αiφ

)[
a2 cos

(
1
2
αi

√
3φ

)
+ a3 sin

(
1
2
αi

√
3φ

)]
, (3.11)

where the coefficients ai are constants and αi is given by [3(h2
i cos θs − 1 − γ hi)/h3

i ]
1/3.

A more useful form of αi is obtained by noting that, on neglecting terms of O(B−1),
differentiating (3.8) with respect to θ gives(

h2
i cos θs − 1 − γ hi

) dh

dθ

∣∣∣∣
h=hi ,θ=θs

= 1
3
h3

i sin θs

so that αi = [sin θs/dh/dθ |h =hi ,θ = θs
]1/3. This enables the sign of αi to be quickly

determined by noting θs , the angle at which the shock occurs, and the sign of the
gradient of the tangent to the profile at the shock. In this way, it can be shown that, for
any position of the shock (except θs = 0, π), the coefficients α1 and α3, corresponding
to positive heights h1 and h3, are always negative while α2 corresponding to h2, is
always positive. Suppose αi is negative, then to keep ζ bounded as φ → −∞ (θ < θs)
we must have a1 = 0; for boundedness as φ → ∞ (θ > θs) we must have a2 = a3 = 0.
In this latter case (φ → ∞), the approach to the shock is monotonic and, in general,
there would be insufficient freedom in the coefficients to effect local matching. In
the former case (φ → −∞), the approach is oscillatory and it is likely that matching
could be effected, thus making the existence of the shock plausible. Likewise, when
αi is positive, bounded solutions of (3.10) are monotonic for negative values of φ and
oscillatory for positive values. An asymptotic shock structure seems to be plausible
when the height of the surface profile has an oscillatory behaviour as the shock is
approached from either side.

As before, applying this local result suggests that shocks between the wetting profiles
h = h1 and h = h2, where α1 < 0 and α2 > 0, are feasible only when h = h1 before the
shock, i.e. at negative values of φ, and h = h2 after the shock, i.e. at positive values of
φ. Thus at the critical flux condition q = q0

c only a rearward-facing shock is plausible,
as illustrated in figure 6. Similarly, a forward-facing shock between the wetting profile
h = h2 and the unbounded profile h =h3 is plausible when q = qπ

c , as illustrated in
figure 5(b). At the double critical point q = q0

c = qπ
c , the two previous single-shock

cases are feasible (though the analysis is not valid for the rearward-facing shock for
θs ≈ π), and the double-shock combination of these two shocks is also feasible (with
the rearward-facing shock restricted to the upper half of the cylinder). The local
analysis implies that other shock structures are not possible, since shocks are feasible
only when two branches having differing sign[α] are joined in order to assure the
required oscillatory behaviour. Likewise multiple-shock structures having the required
oscillatory behaviour cannot be constructed for non-critical values of q .

Thus, it appears that the inclusion of surface tension removes the non-uniqueness
of the lubrication model.

3.4. Smoothing of shocks by surface tension and gravity

When both higher-order surface-tension and gravitational effects are significant, it
is the surface-tension derivative term that generally determines the inner behaviour



328 M. Villegas-D́ıaz, H. Power and D. S. Riley

1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5

h

θ

Figure 6. A single shock located in the second quadrant in the case q = q0
c = 0.1359,

γ = −3.5, δ = 0, B−1 = 0, h̄ = 0.3326.

(consistent with our assumption that B−1 =O(1) as δ → 0) and hence the plausible
shock structures. The cases are therefore summarized as:

(i) For q = q0
c , h̄

l
< h̄ < h̄

u
: single rearward-facing shock joining two attached

wetting branches, at any position around the cylinder.
(ii) For q = qπ

c , h̄ > h̄
u
: single forward-facing shock joining upper wetting branch

and the unbounded branch, on the lower half of the falling side of the cylinder, i.e.
π <θ < 3π/2.

(iii) For q = q0
c = qπ

c : (h̄
l
< h̄ < h̄

u
) single rearward-facing shock joining two wetting

branches, at any position around the cylinder, except near θ = π; (h̄ > h̄
u
); single

forward-facing shock joining upper wetting branch and the unbounded branch, on
the lower half of the falling side of the cylinder, i.e. π < θ < 3π/2.

(iv) For q = q0
c = qπ

c : double-shock structure with rearward-facing shock joining
two wetting branches, located in top half of the cylinder and forward-facing shock
joining upper wetting branch and unbounded branch, located on the lower half of
the falling side of the cylinder, i.e. π <θ < 3π/2.

Note that the local analyses can only suggest the form of possible solutions but
not determine their exact form, since a complete asymptotic match has not been
carried out. To determine further information on the effect of the smoothing terms,
i.e. gravity and surface tension, a numerical study of the steady-state profiles, as well
as transient processes, has been undertaken.

4. Numerical solution
To study the shock structures outlined in § 3, steady-state film profiles were found

numerically by solving (2.7) for those values of q and mean film thickness h̄, for which
shocks were expected to exist. The numerical scheme was based on a fourth-order
central-difference approximation of the spatial derivatives over [0, 2π). For given
values of q , γ , δ, B−1, and an initial guess of the profile corresponding to the solution
of the algebraic part of (2.7), the nonlinear system of algebraic difference equations
was solved using the MATLAB routine solve, which is a modified Newton method.

Similarly, central differences were also used to approximate the spatial derivatives
in the evolution equation (2.6) and the method of lines employed to solve the resulting
system of first-order ordinary differential equations; the MATLAB routine ode15s
was used as the solver.
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Figure 7. Three different computed shock profiles: q = q0
c = 0.1359, γ = −3.5, δ = 0.0,

B−1 = 10−3 and (a) h̄ = 0.2376, (b) h̄ = 0.2883, (c) h̄ =0.3383.

To validate the numerical codes, we successfully reproduced the various two-
dimensional solutions reported in Benjamin et al. (1993) and Noakes (2001) for the
case of zero surface shear. The grid-convergence of our solutions was verified by
increasing the number of mesh points in regions of rapid change. For our iterative
scheme, a convergence criterion of the relative error being less than 10−8 was satisfied
in all our calculations.

5. Computed smoothed shock structures
First, we consider the effect of surface-tension smoothing, i.e. B−1 �= 0 and δ = 0.

(Since Γ = 1, B−1 = σδ/ρgR2, therefore this situation pertains to hypothetical flows
where σ/ρgR2 → ∞ as δ → 0.) Assuming that the steady-state solutions of (3.8) depend
smoothly on B−1, it is reasonable to suppose solutions with 0<B−1 � 1 are close to the
corresponding lubrication-model solutions. Thus, the initial guess in the computation
of the smoothed structures was taken to be the solution of the cubic polynomial for
the same values of q and γ . When further computations were made for incremental
increases in B−1, with other parameters fixed, the last converged solution was taken
as the initial guess for the new value of B−1.

For q = q0
c in the lubrication model, the local analysis of § 3.5 suggests that it is

possible to have rearward-facing shocks, joining the two wetting branches, located
anywhere around the cylinder, cf. figure 6. This is confirmed by our numerical results,
see figure 7: here the initial mean film thicknesses are (a) h̄ = 0.2376, (b) h̄ =0.2883, and
(c) h̄ = 0.3383; γ = −3.5 and B−1 = 10−3. Our numerical code failed to converge when
initial profiles featuring forward-facing shocks, cf. figure 4(a), were used. Moreover,
when initial profiles featuring multiple shocks were used, cf. figure 4(c), it was again
not possible to find a steady-state solution. This is not altogether surprising: the
multi-shock structure always comprises at least one theoretically feasible rearward-
facing shock and at least one of the infeasible forward-facing shocks. These results
are in complete agreement with our local analysis.

When q = qπ
c in the lubrication model, the local analysis of § 3.5 suggests that it is

possible to have forward-facing shocks, between the upper wetting branch and the
unbounded branch, located only in the lower half of the cylinder, i.e. π <θ < 3π/2.
This was again confirmed by our computations, cf. figure 8. No other shock structure
resulted from our extensive computations.

In the case of the double critical point, i.e. q = q0
c = qπ

c , the local analysis and the
numerical results above suggest that it is feasible to have rearward-facing shocks
joining the two wetting branches at any position around the cylinder except at θ = π
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Figure 8. A computed single-shock profile at the critical condition: q = qπ
c = −3.7976,

γ = −3.5, δ =0.0, B−1 = 10−5 and h̄ = 2.0889.
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Figure 9. Two different computed shock profiles at the double critical point:
q = q0

c = qπ
c = 0.2068, γ = −2.149139, δ = 0.0, B−1 = 10−3 and (a) h̄ =0.3736, (b) h̄ =0.4939.

(where the analysis is not valid). Our numerical solutions suggest, however, that the
structure depends on the mean film thickness, in particular, when the mean film
thickness is in excess of that of the lower wetting branch, the structure depends
on whether the excess is less than or greater than half the difference between the
respective fractions of the upper and lower wetting branches.

In the first case, specifically when h̄
l
=0.3201 < h̄ < 0.5156 = h̄

m
, the calculations

result in a rearward-facing shock in the lower half of the cylinder. Two of these
rearward-facing shocks located at θ = 1.2π and θ =1.38π are shown in figures 9(a) and
9(b), respectively. In the second case, specifically when h̄

m
= 0.5156 < h̄ < 0.7111 = h̄

u
,

the additional mass in the fraction (h̄ − h̄
m
) accumulates in a steady-state structure

above the upper wetting branch creating a kind of double-shock structure, see
figure 10(a) which shows the profile when h̄ = 0.5944 and B−1 = 10−5. Similar surface
structures have previously been observed and mathematically analysed for thin-film
flows over inclined flat planes and subject to surface shear. Bertozzi, Munch & Shearer
(1999) classify this type of structure as a stable interaction between compressive and
undercompressive waves. According to the lubrication model in the current case, the
wavespeed of infinitesimal disturbances is negative on the upper wetting branch and
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Figure 10. (a) Computed double-shock profile: q = q0
c = qπ

c = 0.2068, γ = −2.149139, δ = 0.0,

B−1 = 10−5 and h̄ = 0.5944> h̄
m
. (b) The effect of increasing the capillary number B−1 (values

shown on the plot) on the height of the double shock in (a).
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Figure 11. Computed double-shock profile: q = q0
c = qπ

c = 0.2068, γ = −2.149139, δ = 0.0,

B−1 = 10−5, h̄ = 0.7878> h̄
u
.

positive on the others, except at θ = 0 and θ = π where it is zero. Consequently, the
rearward-facing part of the double-shock structure in figure 10 is undercompressive
in the sense that disturbances pass through it. On the other hand, the forward-facing
part is compressive with disturbances impinging on it from both sides. Note that the
steady-state solution in figure 10(a) avoids the singular point at θ = π.

This new complex structure is not predicted by the local analysis (which applies only
when the shock is located away from any corners in the lubrication model profiles).
As B−1 increases, the shock structure becomes smoother, having the appearance of a
single hump for larger values of B−1 (see figure 10b) showing computed profiles for
h̄ = 0.5944. The surface profiles shown in figure 10 could not be obtained using the
strategy outlined at the start of § 4. Instead the transient code was run for a few time
steps and then its output used as the initial condition for the Newton solver. Similar
complex surface profiles result when h̄ > h̄

u
= 0.7111, see figure 11 for the case of

h̄ = 0.7878 and B−1 = 10−5.
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Figure 12. Computed double-shock profile with gravitational smoothing:
q = 0.13829>q0

c = 0.1359, γ = −3.5, δ = 10−1, B−1 = 0.0 and h̄ = 0.29013.

It is important to note that, even though the local analysis suggests that a forward-
facing shock is feasible for π < θs < 3π/2, we tried, but failed, to calculate forward-
facing and rearward-facing steady shocks joining the the upper wetting branch and
the unbounded branch shown in figure 3(c). It appears that, as before, any calculated
solution avoids the singular point at θ = π and the only possible solutions with h̄ > h̄

u

feature complex structures similar to that shown in figure 11. A similar structure
has been obtained at parameter values q = q0

c and (γb < γ <γtp), i.e. when the critical
point at θ = π in figure 11 unfolds and turning points feature.

For other values of q , we found no multiple-shock structures between the detached
branches, in agreement with the local analysis. In these cases, the solution tends to a
new smooth surface profile with a mean film thickness different from the initial one.

For gravitational smoothing, i.e. steady solutions of (3.3), all single- and multiple-
shock structures between attached branches suggested by the local analysis (see
figures 4 and 5) were reproduced numerically. As before, however, no multiple-shock
structures joining detached branches were obtained, even though the local analysis
supports their feasibility. Note that the initial profiles were given by the solution of
the algebraic part of (3.3), rather than the solution of the cubic equation arising in the
lubrication model. The algebraic part of (3.3) is given by a fourth-order polynomial
and, for moderate values of δ, its solution results in a significant shift in the critical-
point values, for example in the calculation of the double-shock structure in figure 12,
where the original critical value q0

c =0.1359 changes to qc =0.13829.
In cases where both gravitational and surface-tension smoothing are taken into

account, the effects of surface tension dominate over gravity and the structure reflects
that expected for surface-tension smoothing alone. This is true even in cases when
B−1 was taken to be several orders of magnitude smaller than δ, for example, for
B−1 = 10−3 and δ = 10−1.

In summary, when surface tension is taken into account, the original infinity of
possibilities of shocks joining real positive solutions of the lubrication model is
reduced to only a few. In general, only single shocks joining attached branches are
possible, the exception involves the complex double-shock structure that occurs in the
cases of the double critical point and of the single critical point plus the turning point
(i.e. for γb < γ < γtp and q = q0

c ). In other words, the non-uniqueness in the lubrication
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model for given values of q , γ and h̄ seems to be completely removed by the presence
of surface tension.

6. Stability analysis
From the theoretical and numerical analysis of steady solutions, we conjecture that,

under real physical conditions, i.e. non-zero surface tension and gravity, only the
following steady-state shock structures are possible.

(i) For q = q0
c , h̄

l
< h̄ < h̄

u
: rearward-facing single shocks joining the two attached

wetting branches, located at any position around the cylinder.
(ii) For q = q0

c , γb < γ <γtp: double-shock structure may exist, depending on the
mean film thickness.

(iii) For q = qπ
c , h̄ > h̄

u
: forward-facing single shocks joining the upper wetting

branch and the unbounded branch, located only on the lower half of the falling side
of the cylinder, i.e. π <θ < 3π/2.

(iv) For q = q0
c = qπ

c , h̄
l
< h̄ < h̄

m
: rearward-facing single shocks joining the two

wetting branches, located at any position in the bottom half of the cylinder, i.e.
π < θs < 2π.

(v) For q = q0
c = qπ

c , h̄
m

< h̄: double-shock structure involving all three branches,
located on the lower half of the falling side of the cylinder, i.e. π <θ < 3π/2.

In order to see which of those steady shock-structures are physically realizable,
i.e. sustainable under small perturbations, a numerical study of their stability is
now undertaken using two alternative approaches: eigenvalue analysis and the time
evolution of a localized initial disturbance. Thus the main objective is to examine the
stability of steady solutions, h0(θ) say, of the evolution system (2.6), (2.7), with respect
to infinitesimal disturbances ξ (θ, t). After linearization, the equation governing the
evolution of small disturbances is

(1 − δh0)
∂ξ

∂t
+

∂

∂θ
(f1ξ ) +

∂

∂θ

(
f2

∂ξ

∂θ

)
+

∂

∂θ

(
f3

∂2ξ

∂θ2

)
+

∂

∂θ

(
f4

∂3ξ

∂θ3

)
= 0, (6.1)

where

f1 = 1 + γ h0 − h2
0 cos θ + B−1h2

0(h0 + h′′
0)

′ + δ
[

− h0 − 5
2
γ h2

0

+ 2h3
0 cos θ + h2

0h
′
0 sin θ + B−1h2

0

(
h2

0 + 2h0h
′′
0 + 1

2
(h′

0)
2
)′]

, (6.2)

f2 = B−1 1
3
h3

0 + 1
3
δh3

0 sin θ + δB−1
(

1
2
h4

0 + h3
0 h′′

0

)
, (6.3)

f3 = δB−1h3
0h

′
0, f4 = B−1 1

3
h3

0 + δB−1 1
2
h4

0. (6.4)

Note that these expressions are consistent with those of O’Brien (2002b). In the
lubrication model, the evolution equation reduces to

∂ξ

∂t
+

∂(f ξ )

∂θ
= 0, (6.5)

with

f = 1 + γ h0 − h2
0 cos θ, (6.6)

where q is given by (2.7) with δ =B−1 = 0, see Villegas-Dı́az et al. (2003).
On neglecting surface-tension effects in (6.1), the evolution equation may be written

∂ξ

∂t
+

∂

∂θ
(F1ξ ) +

∂

∂θ

(
F2

∂ξ

∂θ

)
+ F0ξ = 0, (6.7)



334 M. Villegas-D́ıaz, H. Power and D. S. Riley

where

F0 =

(
δh′

0f2

(1 − δh0(θ))2

)′

− δh′
0f1

(1 − δh0(θ))2
, (6.8)

F1 =
f1

(1 − δh0(θ))
− δh′

0f2

(1 − δh0(θ))2
, (6.9)

F2 =
f2

(1 − δh0(θ))
. (6.10)

Therefore the evolution of a disturbance is given by a reaction-convection-diffusion
equation with a variable diffusion coefficient, −F2, that is negative in the upper half
of the cylinder and positive in the lower half, a variable convective velocity, −F1

and a source term −F0. Thus long waves can be convected away from the region
of negative diffusion before they blow-up. There will, however, always be some short
waves that the negative diffusion will cause to focus and blow-up before they are
convected from this critical region. This process has previously been identified as one
of the main sources of instability in this type of flow, see O’Brien (2002b). When
surface tension is taken into consideration, the strength of the negative diffusion
increases (cf. (6.3)), apparently exacerbating the problem. However, positive diffusion,
manifest in the f4-term in (6.1), dominates at high wavenumber and mitigates the
effects of negative-diffusion. This feature is present in the numerics of O’Brien (2002b)
in his stability analysis of smooth film profiles (for zero surface shear, but including
the stabilizing pressure correction due to the centrifugal force).

Here we consider the stability of smooth film profiles featuring regions of rapid
variation (shocks). As pointed out in the previous sections, the presence of surface
shear, applied in the opposite sense to the direction of the rotation of the cylinder,
results in the possibilities of more complex steady-state surface profiles.

In addition to considering the evolution of initially small disturbances in order
to study the linear stability of calculated steady profiles, we also determined the
complex frequencies σ of travelling disturbances ξ (θ, t) = χ(θ) eσ t by computing the
eigenvalues of the problem that results when ξ is substituted into (6.1) and remaining
spatial derivatives discretized. Disturbances with Re{σ} < 0, Re{σ} =0, Re{σ} > 0
are stable, neutrally stable and unstable, respectively; Im{σ} is the frequency of the
disturbance. The eigenvalue problem was solved using the MATLAB routine eig.

The eigenvalues of disturbances to the shock profiles shown in figures 7 to 11,
which are representative of the totality of the possible cases when δ = 0, were found
to be complex with negative real part, i.e. the disturbances comprise travelling waves
with attenuating wave amplitude. Thus the steady-state profiles are linearly stable to
this type of disturbance. Figure 13(a) shows the calculated eigenvalues for the base
profile shown in figure 13(b), a profile with a rearward-facing single shock in the
upper quadrant of the rising side of the cylinder: γ = −3.5, q = q0

c = 0.1359, δ =0,
B−1 = 10−3 and h̄ = 0.3458. The corresponding results for a profile featuring a double-
shock structure are presented in figure 14: γ = −2.149139, q = q0

c = qπ
c = 0.2068, δ =0,

B−1 = 10−3 and h̄ = 0.5944.
When both surface-tension and gravitational smoothing effects are included, we

generally observe similar stable behaviour to these cases. However, as B−1 → 0, for
fixed δ, there is a loss of stability via a Hopf bifurcation. This is illustrated in figure 15
for a profile featuring a rearward-facing single shock. Here γ = −3.5, δ = 0.01, and
q = q0

c =0.1359, h̄ = 0.29013, with decreasing values of B−1: (a) 10−3, (b) 10−4 and
(c) 10−5; the profile in (d) corresponds to case (a). As can be observed, for B−1 = 10−5,
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Figure 13. (a) Computed eigenvalue spectrum and (b) shock profile: q = q0
c = 0.1359,

γ = −3.5, δ = 0.0, B−1 = 10−3 and h̄ = 0.3458.
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Figure 14. (a) Computed eigenvalue spectrum and (b) shock profile corresponding to the
double-critical point: q = q0

c = qπ
c = 0.2068, γ = −2.149139, δ = 0.0, B−1 = 10−3 and h̄ = 0.5944.

some of the eigenvalues have moved into the right-hand side of the complex plane,
the positive real part implying travelling waves with growing wave amplitude.

In order to investigate how an initially small disturbance develops in time, we used
the method of lines to solve the linear evolution equation (6.1). Of particular interest
is how the disturbances evolve as they approach a shock. In figure 16(a–c), the time
evolution of an initially sinusoidal wave of period 2π, ξ (θ, 0) = 0.01 sin θ , is shown for a
profile with a rearward-facing single shock. The initial profile is shown in figure 16(d):
γ = −2.5, δ =0.0, q = 0.1825, B−1 = 10−3 and h̄ = 0.46. Initially the disturbance focuses
towards the shock, accompanied by a significant increase in the wave height and
a reduction in the wavelength, see figure 16(a), as expected from the study of
the lubrication problem by Villegas-Dı́az et al. (2003). This focusing results in the
formation of a pointed spike at the position of the original shock. After the maximum
height is reached, surface tension damps the disturbance until a stable state is
achieved when the original perturbation is completely absorbed by the shock, see
figure 16(b, c); figure 16(c) shows both the approach to the terminal state and the
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Figure 15. Eigenvalue spectrum: q = 0.1359 ≈ q0
c , γ = −3.5, δ = 10−2, h̄ =0.29013, and

(a) B−1 = 10−3, (b) B−1 = 10−4, (c) B−1 = 10−5; (d) the shock profile in case (a).

initial disturbance (dotted curve). As, during the focusing process, the wave amplitude
reaches a significant magnitude which is outside the range of validity of the linear
approximation, we repeated the simulation using the nonlinear system (2.6), (2.7). The
results from the nonlinear transient problem were qualitatively identical to the linear
one, with a smaller maximum wave amplitude during the focusing process.

Similar focusing and concurrent mitigation effects were observed when the evolution
of perturbations to profiles with double-shock structures was analysed. During the
focusing process, two spikes instead of one are formed at the shock positions (see
figure 17). This figure shows the corresponding evolution of a sinusoidal disturbance
of period 2π on the base profile displayed in figure 17(d), γ = −2.149139, δ =0,
q = 0.2068, B−1 = 10−3 and h̄ = 0.5944.

A similar evolution process, for profiles with either single and double shocks,
occurs when sinusoidal perturbations with higher wavenumbers are considered. It is
noteworthy that the maximum amplitude of the spikes decreases as the wavenumber
of the initial disturbance increases. From this analysis, we conclude that not only
does the inclusion of surface tension make the solution to a given problem unique,
but also stabilizes the possible shock profiles.

The results confirm the filling mechanism that we proposed in our previous work,
Villegas-Dı́az et al. (2003), namely, for fixed values of γ and q = q0

c , it is possible to
have a stable transition from the thinner wetting surface profile h = h1 to the thicker
one h = h2 by the added mass being absorbed at a single rearward-facing shock
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Figure 16. (a)–(c) The evolution of an initial perturbation, shown in (c), given by
ξ0(θ, 0) = 0.01 sin θ . (d) The film profile corresponds to q =0.1825= q0

c , γ = −2.5, δ = 0.0,
B−1 = 10−3 and h̄ = 0.46.

joining the wetting profiles. In figure 18, we illustrate the essence of this process by
presenting results from the full nonlinear transient code when a given rearward-facing
single shock moves to a new position under the addition of positive mass through a
perturbation: γ = −2.5, δ =0, q = 0.1825 and B−1 = 10−5.

7. Conclusions
In previous studies of thin-film flow, the existence of two-dimensional ridges has

been identified as a precursor to the development of axial instabilities into shark-
tooth and finger patterns (Thoroddsen & Mahadevan 1997). According to classical
lubrication theory, it is possible in principle to have multiple, two-dimensional,
discontinuous shock profiles formed by joining positive solution branches of the
flux equation. It is not currently known, however, which of these shock structures are
physically realizable and consequently possible sources of the ridges. Using kinematic-
wave theory, Villegas-Dı́az et al. (2003) show that, in a lubrication model incorporating
an applied surface shear, the following compressive-shock structures are stable to two-
dimensional infinitesimal disturbances: single rearward-facing shocks located at any
position around the cylinder when q = q0

c ; single forward-facing shock located on the
descending side in the lower half of the cylinder when q = qπ

c ; and either of these
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Figure 17. (a)–(c) The evolution of an initial perturbation, shown in (c), given by
ξ0 = 0.01 sin θ . (d) The shock profile corresponds to q = 0.2068= q0

c = qπ
c , γ = −2.149139,

δ = 0.0, B−1 = 10−3 and h̄ = 0.5944.
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Figure 18. The shock is shifted towards the first quadrant by adding a perturbation of
non-zero filling fraction: q = 0.1825, γ = −2.5, δ = 0.0, B−1 = 10−5. Initially h̄ = 0.4151 and
finally h̄ = 0.4399.
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single shocks or a double shock that comprises a rearward-facing shock located in
the upper half of the cylinder and a forward-facing shock located on the descending
side in the lower half of the cylinder when q = q0

c = qπ
c .

Although significant insight can be gained by such analysis, it is necessary to
consider higher-order effects not included in the lubrication model, specifically surface-
tension and gravitational smoothing, in order to gain assurance that the structures
are mathematically and physically realizable. By theoretical analysis and numerical
simulation, we offer support to the conjecture that the single shocks when q = q0

c

or q = qπ
c remain feasible when these higher-order smoothing effects are taken into

account. These types of single shock are referred to as compressive shocks in the
literature, in the sense that disturbances on each side of the shock travel toward the
shock. We note that such structures are unstable to transverse perturbations, Bertozzi
et al. (2001). On the other hand, our analysis indicates that when q = q0

c = qπ
c , only

single rearward-facing (compressive) shocks located in the lower half of the cylinder
are possible. In this case, we also found that, when the mean film thickness is
larger than h̄

m
, a stable two-dimensional double structure is formed by an interaction

between compressive and undercompressive shocks, where undercompressive refers
to shocks through which disturbances travel. Likewise, the double-shock structure
on the base profile featuring a turning point is also stable. In the case of thin-film
flow down an inclined plane, this type of double-shock structure seems to be stable
to transverse travelling disturbances (Bertozzi et al. 2001). Based on our analysis,
it appears that no other type of two-dimensional shock structure is feasible, even
when non-critical values of the flow rates are considered. The inclusion of an applied
surface shear gives rise to the possibility of having a single stable two-dimensional
shock located anywhere over the surface of the cylinder and a double shock-structure
located on the descending side in the lower half of the cylinder.

Finally we note that, although unbounded solutions have been dismissed in this
current study, it would be interesting to investigate the internal curtain-flow problem
(see Balmer 1970), the external two-dimensional analogue of which was investigated
theoretically by Wilson & Duffy (1999).

The authors would like to thank Steve Wilson for supplying a preprint of his study.
M.V.D. acknowledges financial support from the Consejo de Desarrollo Cientifico y
Humanistico of Universidad Central de Venezuela.

Appendix A. Governing equations
The dimensional Navier–Stokes equations for an incompressible two-dimensional

flow in cylindrical coordinates (see figure 1) are

1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
= 0, (A 1)
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where ∇2 =
∂2

∂r2
+

1
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∂2

∂θ2
.
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The velocity field (u(r, θ, t), v(r, θ, t)) and pressure field p((r, θ, t)) satisfy (A 1)–(A 3)
and boundary conditions (2.3)–(2.4), where
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1√
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1

r2

(
∂h
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)2

(
− 1
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(
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1
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eθ

)

and the curvature

κ = −
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2
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(
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)2

+
1

r
+

1

r2

∂2h
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][
1 +

(
1
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.

Using the kinematic boundary condition at the free surface r =R − h,

D

Dt
(r − R + h) = 0, (A 4)

together with the continuity equation integrated radially across the film yields the
flux equation

(R − h)
∂h

∂t
+

∂q

∂θ
= 0, (A 5)

where q is the azimuthal fluid flux defined by

q =

∫ R

R−h

v dr. (A 6)

Appendix B. Non-dimensionalization and the lubrication approximation
In the absence of surface tension, any difference between the actual flow and rigid-

body rotation will, in the steady state, be caused by the draining effect of gravity.
Gravitational forces scale as ρg and viscous shearing forces induced by rotation of
the cylinder as µΩR/h2

0; the ratio of these is Γ = gh2
0/νΩR, which measures the

relative importance of the two. Low values of Γ correspond to the case when gravity
is negligible, for example in an aeroengine at extremely high rotation rates, and high
values when gravity is dominant, when pooling at the bottom of the cylinder would
be expected. The azimuthal velocity scale and time scale associated with rotation are
ΩR and Ω−1, respectively, while dynamic pressure changes are associated with the
viscous pressure scale µΩR2/h2

0.
In view of the above discussion, dimensionless variables are introduced such that

r� =
r

R
, y� =

R − r

h0

, u� =
u

Ωh0

, v� =
v

ΩR
,

t� = Ωt, p� =
δ2p

µΩ
, h� =

h

h0

, κ� =
Rκ

δ
,


 (B 1)

where the differing scales for u and v are forced by the continuity equation, and the
free-surface curvature has been scaled on δ/R, where δ = h0/R denotes the aspect
ratio of the film, since, for films that are nearly uniform, this is the magnitude of
curvature variations that generate a capillary pressure gradient.

After dropping the stars, the equations become

δu

(1 − δy)
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+

1
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= 0, (B 2)
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where Re denotes the reduced Reynolds number ΩR2δ2/ν and Fr the Froude number√
Ω2R/g. Most of the experimental studies have been concerned with situations

where the reduced Reynolds number is small. Though some practical applications
(including oil flow in aeroengines) can have large reduced Reynolds number, we
restrict ourselves to the asymptotic limit Re → 0+ as this may facilitate experimental
verification of the theoretical results. Taking Γ = Re/Fr2 = O(1) and δ =O(1) as
Re → 0+ in the above equations reduces them to
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where r =1 − δy.
The kinematic condition (A 5) at the free surface y = h(θ, t) becomes

(1 − δh)
∂h

∂t
+

∂q

∂θ
= 0, (B 8)

where q , non-dimensionalized using the scale ΩRh0, is defined by

q =

∫ h

0

v dy. (B 9)

The boundary condition at the cylinder surface y =0, (2.3), becomes

u = 0, v = 1, (B 10)

while, at the free surface y = h(θ, t), the stress conditions become(
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where γ = Taδ/µΩ , B = ΩµR/σδ3 is the capillary number and κ is given by
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with r = 1 − δh. The non-dimensionalization scheme used above is essentially that
initially introduced by Noakes (2001). There are, of course, many other ways of
proceeding. In order to remove Γ from the problem, Benjamin et al. (1993) and
Villegas-Dı́az et al. (2003) take the film scale h0 = (νΩR/g)1/2; Benjamin et al. thus
use a hydrostatic scale for the pressure and the aspect ratio and dimensionless applied
stress become, respectively,

δ =
h0

R
=

√
Ων

gR
, γ =

Ta√
ρgµΩR

. (B 14)

Hosoi & Mahadevan (1999) use this same non-dimensionalization except that they
focus on inertial instabilities and use the slow time scale R2/ν, rather than the fast
one Ω−1. Ashmore et al. (2003) use an approach very close to the current one except
that they use the filling fraction, rather than the aspect ratio, as a more naturally
defined small parameter.

Appendix C. Asymptotic development of the governing equations
Equations (B 5)–(B 7), subject to the boundary conditions (B 10), (B 11) and (B 12),

determine the dynamics of the flow. In order to make further analytical progress we
now exploit the fact that the aspect ratio δ is very small in many practical situations.
It is natural therefore to seek asymptotic expansions in the form

(u, v, p) = (u0, v0, p0) + δ(u1, v1, p1) + δ2(u2, v2, p2) + O(δ3). (C 1)

C.1. Leading-order solution

Without loss of generality, the constant O(δ−1)-term from the curvature can be
absorbed into the constant pa . We keep the surface-tension effect at the leading order,
even though in most practical situations the magnitude of the inverse capillary number
is very small, since at a shock front the magnitude of the high-order derivatives of
the film thickness can be very large.

The leading-order system is straightforward to obtain and solve; the key results
are
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, (C 2)
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C.2. First-order solution

Similarly, the key results here are
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Thus, to O(δ), the profile evolves according to
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Neglecting surface tension corresponds to the classical lubrication limit; the system
(C 6), (C 7) with δ =B−1 = 0 is termed the ‘lubrication model’.
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